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Trapped modes in the water-wave problem
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Trapped modes in the linearized water-wave problem are free oscillations of an
unbounded fluid with a free surface that have finite energy; it has been known for
some time that such modes are supported by certain structures when held fixed. This
paper investigates the problem of a freely floating structure that is able to move in
response to the hydrodynamic forces acting upon it and it is shown that trapped
modes also exist in this problem. For a freely floating structure, a trapped mode is a
coupled oscillation of the fluid and the structure.

1. Introduction
It is known that, within the linearized theory of water waves, certain structures when

held fixed can support a trapped mode of a particular frequency (McIver 1996). Such
a mode is a free oscillation of an unbounded fluid with a free surface that has finite
energy, does not radiate waves to infinity, and in the absence of viscosity will persist
for all time. If, for a specified frequency of fluid oscillation, the structure does not
support a trapped mode, then the solutions to the frequency-domain radiation and
scattering problems at that frequency are unique. From the practical point of view,
the existence of a trapped mode means that it is difficult to find accurate numerical
solutions to the radiation and scattering problems for a range of frequencies around
the trapped-mode frequency (Newman 1999).

McIver (1997) showed that trapped modes are orthogonal to any incident wave
and consequently will not be excited in a scattering problem in either the time or
frequency domains. However, the existence of a trapped mode implies that at the
trapped-mode frequency there is a pole in a frequency-domain radiation potential and
the solution to the corresponding radiation problem does not exist at that frequency.
A consequence of this is that trapped modes can be excited in the time domain by
the forced oscillations of a trapping structure (McIver, McIver & Zhang 2003).

It has been established that the trapped modes supported by a fixed structure,
as described above, cannot be excited when that structure is allowed to float freely
(and hence respond to the hydrodynamic forces on it), with or without incident
waves (McIver 2005). For motion in a single mode, this follows immediately from
the frequency-domain equation of motion which shows that the pole in the radiation
potential at the trapped-mode frequency is annulled by a corresponding zero in the
velocity. However, it was also found that trapped modes supported by fixed structures
cannot be excited by more general motions of the structure that involve more than
one mode of oscillation. Thus, although the existence of such trapped modes leads to
numerical difficulties in the solution of the frequency-domain radiation and scattering
problems, their existence has no direct relevance to the problem of a freely floating
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body in which the radiation and scattering problems are combined through the
equation of motion. It is therefore natural to investigate questions of uniqueness,
and in particular the existence of trapped modes, in the problem of a freely floating
structure.

Remarkably, there appears to be only one published result on uniqueness in the
problem for a freely floating structure and that is due to John (1950) (although
Kuznetsov, 2003, has applied the ideas in the proof to a structure supported by an
air cushion). Suppose a structure satisfies the conditions that vertical lines drawn
downwards from the free surface do not intersect the structure and that no part of
the free surface is isolated from infinity, then John’s result states that there is a unique
solution to the problem of a freely floating structure, and hence no trapped modes,
provided that the frequency is sufficiently high.

The purpose of the present work is to demonstrate the existence of freely floating
structures that do support trapped modes; these modes correspond to coupled
free oscillations of both the structure and the surrounding fluid. In line with the
terminologies employed by McIver (2005) in the context of a more general discussion
of resonances, fixed structures that support persistent free oscillations of the fluid will
be called ‘sloshing trapping structures’, while structures that may oscillate freely in
the presence of the fluid will be called ‘motion trapping structures’. The method used
in the constructions described here is an inverse procedure similar to that used by
Kyozuka & Yoshida (1981) to obtain wave-free oscillating structures, and by McIver
(1996) to obtain sloshing trapping structures. All of the examples presented violate
both of the conditions in John’s theorem and, in particular, there is always a portion
of the free surface that is isolated from infinity. John’s result does not rule out trapped
modes for structures that have no isolated portion of the free surface, but attempts
to find such structures have failed.

For a structure to support motion trapped modes of a particular frequency ω = ω0

in a single mode of oscillation, the corresponding frequency-dependent hydrodynamic
coefficients must satisfy two conditions at this frequency. First of all, the damping
coefficient must be zero, so that there is no wave radiation to infinity, and secondly,
the added mass coefficient must satisfy a resonance condition obtained from the
requirement that the homogeneous form of the equation of motion for the structure
has a non-trivial solution. The latter condition may be rewritten in terms of properties
of the velocity potential by an application of Green’s theorem. Trapping structures are
found by an application of the inverse procedure that uses a singular velocity potential
that does not radiate waves to infinity and satisfies the additional requirements
imposed by the new form of the resonance condition. Motion trapping structures are
then obtained by examination of the streamlines corresponding to a modified potential
that ensures that the correct boundary condition on the surface of the structure is
satisfied. Unlike sloshing trapping structures, there is no singular behaviour at the
trapped-mode frequency in any of the hydrodynamic coefficients.

This paper is concerned with two-dimensional motions and attention is focused
mainly on structures that are constrained to move in heave. The problem is
formulated in § 2 and the modified form of the resonance condition is obtained
in § 3. Specific constructions of motion trapping structures are described in § 4 and
some consequences of the existence of motion trapping structures are discussed
in § 5. Finally, in § 6, it is demonstrated that the restriction to vertical motions is
not necessary for the existence of motion trapping structures and an example that
oscillates horizontally is described briefly.
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2. Formulation
Attention is restricted to motion in two dimensions and Cartesian coordinates x, z

are chosen with z directed vertically upwards from the mean free surface. In addition,
plane polar coordinates R, θ will be used where θ is measured from the downward
vertical so that z = −R cos θ .

Consider a moored surface-piercing structure constrained to move in the vertical
direction with initial displacement Z(0) and initial velocity Ż(0). The Fourier transform
of the time-domain equation of motion yields the frequency-domain equation of
motion

[ρgW + κ − ω2{M + a(ω) + i(b(ω) + γ )/ω}]v(ω)

= −iω[X(ω) + MŻ(0)] − (ρgW + κ)Z(0) (1)

(see, for example, McIver 2005; for a function F of time t the Fourier transform is
defined as

f (ω) =

∫ ∞

0

F (t) eiωt dt (2)

so that the frequency-domain motions are equivalent to oscillations with a time
dependence e−iωt ). Here ρ is the fluid density, g is the acceleration due to gravity, W

is the water plane area, κ is the spring constant of the moorings, M is the mass of
the structure (which by Archimedes’ principle is ρ times the submerged volume V ), a

is the added mass coefficient, b is the damping coefficient, γ is the damping constant
of the moorings, v is the (complex) amplitude of the structural velocity, and X is the
exciting force due to wave incidence on a fixed structure. Note that the functions of
frequency in equation (1) are Fourier transforms in time of physical quantities so that,
for example, v(ω) has the dimensions of length rather than velocity. The inclusion
in (1) of Z(0) and Ż(0) is significant in considerations of the behaviour in the time
domain of motion trapping structures.

3. Conditions for heave resonance
Investigation of the uniqueness of the solution to a problem involving a freely

floating structure in heave leads to consideration of the homogeneous form of (1)
which is

[ρgW + κ − ω2{M + a(ω) + i(b(ω) + γ )/ω}]v = 0. (3)

It follows that necessary conditions for the existence of a non-zero v (so that the
structure is in motion) for some particular frequency ω =ω0 are that

ρgW + κ − ω2
0{M + a(ω0)} = 0 (4)

and

b(ω0) + γ = 0. (5)

For the fluid motion to have finite energy there can be no radiation of waves to
infinity and hence, at the frequency ω0, it is required that the damping coefficient
b is zero. It then follows from (5) that the mooring characteristic γ must also be
zero. The resonance condition (4) can, in principle, be satisfied at any frequency by
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an appropriate choice of the spring constant κ (although in some cases κ would
be negative). The focus here is on structures without moorings, and in this case the
construction of a freely floating trapping structure requires that both

ρgW − ω2
0{M + a(ω0)} = 0 (6)

and

b(ω0) = 0. (7)

So-called wave-free structures, for which b(ω0) = 0, have been studied by a number
of authors. For example, Kyozuka & Yoshida (1981) obtain such structures by an
inverse procedure in which the velocity potential for the fluid motion is expressed
in terms of singular solutions of the governing equations, and then the surface of
a structure is obtained from examination of the streamlines of a modified flow. In
general, the structure so obtained will not possess hydrodynamic characteristics that
also allow equation (6) to be satisfied at the same frequency ω = ω0. However, insight
into how this might be achieved may be obtained through an application of Green’s
theorem as follows.

The result will be explained in detail for two-dimensional motion in water of infinite
depth. Denote by φ0 the velocity potential corresponding to the vertical oscillations
of a wave-free structure at frequency ω = ω0 so that, in particular,

∂φ0

∂n
= nz on Γ (8)

where ∂/∂n is the derivative in the direction normal to the wetted surface of the
structure Γ , directed out of the fluid, and nz is the vertical component of the unit
normal to Γ . By definition, the added mass

a(ω0) = ρ

∫
Γ

φ0nz ds (9)

where the fact that b(ω0) = 0 has been used. With the assumption of symmetry about
x = 0, any wave-free potential must satisfy

φ0 =
µ cos θ

R
+ o

(
1

R

)
as R → ∞, (10)

where µ is a constant, so that to leading order, φ0 is dipole-like at infinity (Ursell
1950); it is possible that µ may be zero.

Let S denote the union of Γ with the free surface F and a closing semicircle S∞ at
infinity in z < 0. Application of Green’s theorem over S to the harmonic functions φ0

and

u = z + 1/K, (11)

where K = ω2
0/g, yields ∫

S

[
φ0

∂u

∂n
− u

∂φ0

∂n

]
ds = 0. (12)

The contribution to the integral from F is zero, as both φ0 and u satisfy the free-
surface condition, and it follows from the asymptotic form (10) that∫

S∞

[
φ0

∂u

∂n
− u

∂φ0

∂n

]
ds = −πµ. (13)
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From the boundary condition (8),∫
Γ

[
φ0

∂u

∂n
− u

∂φ0

∂n

]
ds =

∫
Γ

[
φ0nz −

(
z +

1

K

)
nz

]
ds. (14)

The integral of φ0 is written in terms of the added mass using (9). The divergence
theorem may be used to show that for an arbitrary χ∫

Γ +W

χnz ds = −
∫∫

V

∇χ · ez dV, (15)

where V ( = M/ρ) is the submerged volume of the structure (per unit length in the
y-direction), ez is a unit vector in the z-direction, and nz is the vertical component of
the inward-pointing unit normal to the surface of V . The choice χ = z then gives∫

Γ

znz ds

(
=

∫
Γ

z dx

)
= −V, (16)

and the choice χ = 1 yields∫
Γ

nz ds = −
∫

W

nz ds =

∫
W

dx = W. (17)

Thus, the application of Green’s theorem results in

ρgW − ω2
0{M + a(ω0)} = −πµρω2

0 (18)

and it is apparent that the resonance condition (6) can be satisfied if and only if the
dipole coefficient µ is zero.

For two-dimensional motion in fluid of constant finite depth h, a similar application
of Green’s theorem leads to

ρgW − ω2
0{M + a(ω0)} = −ρω2

0

∫ ∞

−∞
φ0|

z=−h
dx. (19)

so that, given a wave-free potential φ0 at a frequency ω =ω0, a necessary condition
for the existence of a motion trapped mode at that frequency is∫ ∞

−∞
φ0|

z=−h
dx = 0. (20)

4. Construction of motion trapping structures
Motion trapping structures may be constructed using a modification of the inverse

procedure described by Kyozuka & Yoshida (1981). Let φ0 be a wave-free potential
with dipole coefficient µ =0; typically, φ0 will be singular at a number of discrete
points in z � 0. From equation (8), if a suitable structure could be identified, the
modified potential

φ = z − φ0 (21)

would satisfy

∂φ

∂n
= 0 on Γ (22)

so that Γ is a streamline of the flow corresponding to φ. Hence motion trapping
structures are obtained from any streamlines of this flow that isolate the singularities
of φ from infinity.
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The condition (22) can be satisfied if the near field to the structure contains a
dipole component, while the resonance condition (6) holds only if there is no dipole
component in the far field. This can be arranged using the following construction
that uses a wave-free potential for the fluid motion of the trapped mode that has two
components. The first component is

φs =

∫ ∞

0

− eµz cos µ(x − ξ )

µ − K
dµ +

∫ ∞

0

− eµz cos µ(x + ξ )

µ − K
dµ (23)

and is a combination of logarithmically singular wave sources in the free surface
at x = ±ξ that satisfies Laplace’s equation, the free-surface condition and, provided
that Kξ = (2n + 1)π/2 for some integer n � 0, is wave-free at infinity (for all of
the calculations reported here, n is chosen to be zero). This potential was used by
McIver (1996) in the construction of sloshing trapped modes for fixed structures. The
potential φs may be written in terms of the exponential integral E1 as

φs = (−1)nRe {eKz+iKx[π sgn(x − ξ ) − π sgn(x + ξ )

− iE1(Kz + iK(x − ξ )) + iE1(Kz + iK(x + ξ ))]} (24)

and the corresponding streamfunction is

ψs = (−1)(n+1)Im {eKz+iKx[π sgn(x − ξ ) − π sgn(x + ξ )

− iE1(Kz + iK(x − ξ )) + iE1(Kz + iK(x + ξ ))]}. (25)

From equation (24) and standard asymptotic results (Abramowitz & Stegun 1964,
equation 5.1.51) it may be shown that

φs ∼ −2 cos θ

KR
as R = (x2 + z2)1/2 → ∞. (26)

Thus φs has the property that it is logarithmic near to (x, z) = (±ξ, 0) but dipole-like
in the far field. The second component of the wave-free potential is

φd =
1

K2
[φ1(R+, θ+) + φ1(R−, θ−)], (27)

where R±, θ± are polar coordinates with origin at (x, z) = (±ξ, 0) and

φ1(R, θ) =
K cos θ

R
+

cos 2θ

R2
(28)

is a standard wave-free potential (see Linton & McIver 2001, Appendix B) that satisfies
Laplace’s equation and the free-surface condition; the streamfunction corresponding
to (28) is

ψ1(R, θ) = −K sin θ

R
− sin 2θ

R2
. (29)

The potential φd is singular at the same points as φs, has a dipole component in the
near field to each singularity, and to leading order is dipole-like in the far field so
that

φd ∼ 2 cos θ

KR
as r → ∞. (30)
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Figure 1. (b) shows the streamlines corresponding to the streamfunction (32) and (a) shows
the same streamfunction plotted on z = 0; K = 4; n= 0, δ = 1.

With the above properties of φs and φd in mind, the wave-free potential to be
employed in the construction of motion trapping structures is

φ0 = δ(φs + φd), (31)

where δ is an arbitrary positive constant (it is demonstrated in § 4.1 that suitable
streamlines can be found for any δ > 0). This choice for φ0 has all of the required
properties and, in particular, no dipole component in its far field expansion. From
Ursell (1950), it is known that in the far field any potential symmetric about x =0
has an expansion in terms of a wave source and wave-free potentials. Thus, the
elimination from φs (which is already wave-free) of the dipole component using (28)
also eliminates the quadrupole component so that φ0 =O(1/R3) as R → ∞.

Motion trapping structures are obtained by examination of the streamfunction

ψ = −x − δ(ψs + ψd) (32)

where

ψd =
1

K2
[ψ1(R+, θ+) + ψ1(R−, θ−)]. (33)

Figure 1(b) shows the streamlines of ψ in x > 0 for the case K = 4, δ = 1. (The
wavenumber K could be scaled out of the problem, but it is convenient not to do this
in view of some of the computations for finite depth presented later in the paper.) The
streamline pattern for x < 0 is obtained by reflection in x = 0. This figure is typical in
that, for x > 0, there is a single dividing streamline, part of which (shown by a thick
line in the figure) forms a contour that, in the fluid region, isolates the singular point
from infinity; the part of this contour that lies in z < 0, together with its reflection
in x = 0, forms the wetted surface Γ of the motion trapping structure. It should be
borne in mind that the streamline pattern shown in figure 1 does not correspond to
that in the water-wave problem, it serves only to determine the contour Γ . The value
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Figure 2. The right-hand element of trapping structures obtained from the streamfunction
(32); K =4, n= 0. Each structural surface is marked with the corresponding value of δ.

of the streamfunction on the dividing streamline is obtained by numerically locating
the stagnation point of the flow and inserting the coordinates into the streamfunction.
Once the dividing streamline is known, the resonance condition (6) can be verified by
computing the added mass from equation (9) and the submerged volume (and hence
the mass) from equation (16).

Although for each K and δ the potential φ0 generates a single motion trapping
structure, continuous variation of δ gives a range of structures with the same resonant
wavenumber K . Numerical experimentation suggests that trapping structures can only
be obtained for δ > 0 and some of the structures obtained for K = 4 are shown in
figure 2. For most of the values of δ illustrated, the structures resemble the sloshing
trapping structures obtained by McIver (1996) in that the so-called John condition is
satisfied on the inside of the structural element (small x), so that vertical lines drawn
down from the free surface do not intersect Γ , but on the outside of the element, the
John condition is violated. However, for small δ, the John condition is violated on
both sides of the element (Motygin & Kuznetsov, 1998, obtained a family of sloshing
trapping structures that violate the John condition on both sides of an element).

4.1. The streamline pattern

In this section, the streamline pattern associated with the potential φ = z − φ0

is discussed and, in particular, it is shown that motion trapping structures are
possible for any positive value of the parameter δ that appears in equation (31). The
streamfunction ψ associated with φ is

ψ = −x + δ

[∫ ∞

0

− eµz sin µ(x − ξ )

µ − K
dµ +

∫ ∞

0

− eµz sin µ(x + ξ )

µ − K
dµ +

(x + ξ )

K[z2 + (x + ξ )2]

− 2z(x + ξ )

K2[z2 + (x + ξ )2]2
+

(x − ξ )

K[z2 + (x − ξ )2]
− 2z(x − ξ )

K2[z2 + (x − ξ )2]2

]
. (34)

This function is antisymmetric in x so that ψ(0, z) = 0, and to leading order ψ has
a quadrupole singularity at (x, z) = (ξ, 0). From an investigation of the variation of
the streamfunction along z = 0, we will demonstrate that if δ > 0 and Kξ = π/2, there
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is a streamline of the function which leaves the free surface from a point to the
right of x = ξ and re-enters it in the region 0 <x <ξ . By symmetry there is then a
corresponding streamline in x < 0, and this pair of streamlines form a motion trapping
structure (in the following, it is assumed that x � 0).

From (34), ψ(x, 0) ranges from zero at x =0 to −∞ as x → ξ− and ψ(x, 0) ranges
from +∞ to −∞ as x varies from ξ to ∞ (see figure 1a). From equation (34)

∂ψ

∂x
(x, 0) = −1 + Kδ

[∫ ∞

0

− cos µ(x − ξ )

µ − K
dµ +

∫ ∞

0

− cos µ(x + ξ )

µ − K
dµ

− 1

K2(x + ξ )2
− 1

K2(x − ξ )2

]
. (35)

The integrals in (35) may be rewritten with the use of contour integration and the
quadrupole terms may also be expressed as integrals to give

∂ψ

∂x
(x, 0) = −1 + Kδ

[
−π

(
sin K |x − ξ | + sin K(x + ξ )

)
+

∫ ∞

0

µ e−µ|x−ξ |

K2 + µ2
dµ

+

∫ ∞

0

µ e−µ(x+ξ )

K2 + µ2
dµ − 1

K2

∫ ∞

0

µ e−µ|x−ξ | dµ − 1

K2

∫ ∞

0

µ e−µ(x+ξ ) dµ

]

= −1 − Kδ
[
π

(
sin K |x − ξ | + sin K(x + ξ )

)

+
1

K2

∫ ∞

0

µ3 e−µ|x−ξ |

K2 + µ2
dµ +

1

K2

∫ ∞

0

µ3 e−µ(x+ξ )

K2 + µ2
dµ

]
. (36)

Thus if Kξ = π/2,

∂ψ

∂x
(x, 0) = −1 − δ

K

[∫ ∞

0

µ3 e−µ|x−ξ |

K2 + µ2
dµ +

∫ ∞

0

µ3 e−µ(x+ξ )

K2 + µ2
dµ

]
for x > ξ, (37)

and for 0 � x < ξ ,

∂ψ

∂x
(x, 0) = −1 − δ

K

[
2π cos Kx +

∫ ∞

0

µ3 e−µ|x−ξ |

K2 + µ2
dµ +

∫ ∞

0

µ3 e−µ(x+ξ )

K2 + µ2
dµ

]
. (38)

As 0 � Kx < π/2 in (38), ∂ψ/∂x(x, 0) < 0 ∀x �= ξ , and so ψ monotonically decreases
from +∞ to −∞ as x varies from ξ to ∞ and ψ monotonically decreases from 0 to
−∞ as x varies from 0 to ξ .

A streamline which emanates from the free surface to the right of the singular
point, on which ψ > 0, cannot cross the z-axis, as ψ = 0 there. In addition it cannot
go off to infinity in x > 0 as ψ ∼ −x as x2 + z2 → ∞, nor can it return to the free
surface as there is no place at which ψ > 0 other than where it started. Thus the
streamline must terminate at the singular point, which is possible as the flow field is
quadrupole-like in the immediate neighbourhood of that point.

At large distances to the right of the singular point, the streamlines asymptote to
those for a uniform stream in the z-direction, so streamlines coming out of the free
surface for large values of x go to negative infinity in z. Thus there is a dividing
streamline which emanates from the free surface to the right of the singular point, on
which ψ = ψd � 0, and which separates the streamlines that enter the singular point
from those which tend to infinity. If ψd = 0, then the dividing streamline must connect
to the x-axis rather than the free surface and so form a structure with one element
rather than two, but in practice this does not seem to happen.
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Assume now that ψd < 0. If there is no stagnation point on the dividing streamline
in z < 0, then it must meet the free surface at some x in the interval (0, ξ ) and hence
form one element of a two-element structure. However, this situation is impossible as
the resulting flow pattern would not be able to accommodate those streamlines that
tend to negative infinity in z and for which ψ ∈ (−∞, ψd). If the dividing streamline
does come to a stagnation point (of any order) in z < 0, then one branch of the
streamline that emerges from the stagnation point must go to infinity, and at least
one branch must go into the singularity. If there is no other branch with ψ = ψd,
then the streamlines that emerge from the free surface with ψ <ψd could not be
accommodated into the flow pattern, as streamlines at large depths with this range of
streamfunction values already exist to the right of the dividing streamline. Hence one
branch of the streamline from the stagnation point must join the free surface to the
left of the singular point, where it divides streamlines emanating from this portion
of the free surface into those entering the singular point and those going to negative
infinity in z. (If there are further stagnation points, then the above arguments can be
repeated with minor modifications, although numerical calculations suggest that there
is a single stagnation point.) The portion of the dividing streamline which connects
to the free surface, plus its reflection in the z-axis, removes the singularities from the
flow field and so may be taken to be the boundary of a motion trapping structure.
Thus, for a given K , a trapping structure may be found for any δ > 0.

5. Consequences of the existence of motion trapped modes
5.1. The frequency domain

In the case of a sloshing trapping structure, the frequency-domain radiation potential
has a pole at the trapped-mode frequency, but the scattering potential is orthogonal
to the trapped mode and hence is well-behaved at the trapped-mode frequency.
Newman (1999) has performed detailed numerical calculations of the frequency-
domain hydrodynamic coefficients for fixed trapping structures in three dimensions.
The most striking manifestation of the singularity in the radiation potential is the
very rapid change in the added mass coefficient that occurs around the trapped-mode
frequency.

For a motion trapping structure, the scattering and radiation potentials are both
well behaved at the resonant frequency ω = ω0. Consequently, the hydrodynamic
coefficients for such a structure are analytic functions of the frequency ω for all real
positive values. By construction, the damping coefficient b is zero at the resonant
frequency ω = ω0 and hence, from the Haskind relation, the exciting force X(ω0) = 0.
The added mass and damping coefficients for two motion trapping structures are
shown in figure 3 (the corresponding structures are shown in figure 2); from now on,
K =ω2/g. In both cases, motion trapping occurs for K = 4 and at lower frequencies
there are rapid changes in the added mass and damping that are associated with
a pole of the radiation potential in the lower half of the complex frequency plane.
These poles correspond to sloshing complex resonances associated with fluid motions
between the two elements of each structure (see McIver 2005). In case (a) the region
of rapid change is well away from the motion trapped mode at K = 4 where the
added mass in positive. This contrasts with case (b) in which there are much stronger
changes in added mass and damping and at K = 4 the added mass is negative. In
both cases, the zero in the damping at K =4 occurs in a region where the damping
is in any case very small.
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Figure 3. Heave added mass a/ρ (———) and damping b/ρω (– – –) coefficients for motion
trapping structures with K = 4 and (a) δ = 0.05, (b) δ = 1.
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Figure 4. Displacement η/h of the mid-point of the internal free surface (–––) and
displacement ζ/h of the structure (– – –) owing to release of the structure from rest.

Singular behaviour in a problem involving a motion trapping structure may arise
through the solution of the equation of motion (1) for v(ω). If one or both of the
initial displacement and velocity, Z(0) and Ż(0), respectively, are non-zero then from
(1) the velocity v will have a simple pole at ω = ω0. Thus, in these circumstances,
the solution to the boundary-value problem will not exist at the resonant frequency.
However, if Z(0) = Ż(0) = 0, then the analytic nature of X(ω) means that the zero in
X annuls the zero arising from (6) and (7) and so v(ω) is non-singular at the resonant
frequency and the solution to the boundary-value problem exists, although it will not
be unique.

5.2. The time domain

Any persistent oscillation in the time domain with frequency ω0 corresponds to
a simple pole in the frequency-domain potential at a real frequency ω = ω0 (see
McIver 2005). In the discussion of § 5.1, it was noted that for a motion trapping
structure, such poles will occur only as a result of a non-zero initial displacement
and/or velocity. Thus, for example, a motion trapped mode will be excited in the
time domain by displacing the corresponding trapping structure from its equilibrium
position and releasing it from rest. This is illustrated in figure 4 by means of a
numerical calculation made using the method described by McIver et al. (2003).
This method is for two-dimensional motion in fluid of constant finite depth h and
hence a modification of the constructive procedure described in § 4 is required. For the
structure used in the calculations, φs is taken to be a pair of wave sources and φd a pair
of wave dipoles (Yu & Ursell 1961) with the spacing 2ξ and finite-depth wavenumber
k chosen to satisfy kξ = π/2, where k is related to K through K = k tanh kh. The
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Figure 5. Fourier transform of the displacement, shown in figure 4, of the mid-point of the
internal free surface owing to release of the structure from rest.
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Figure 6. Displacement η/h of the mid-point of the internal free surface (——) and
displacement ζ/h of the structure (– – –) owing to an incident wave packet.
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Figure 7. Fourier transform of the displacement, shown in figure 6, of the mid-point of the
internal free surface owing to an incident wave packet.

particular trapping structure used here has a trapped-mode frequency corresponding
to kh = 4 and the parameter δ = 0.05 (the shape of the structure obtained is very
close to that shown in figure 2 for infinite depth with K = 4 and δ = 0.05). Figure 4
shows the displacement of the structure and the free-surface elevation at the mid-
point of the internal free surface. After an initial transient has decayed, both motions
settle to a steady oscillation with the same frequency. The discrete Fourier transform
of the surface elevation shown in figure 5 confirms that this oscillation is at the
trapped-mode frequency (see McIver et al. 2003 for further details of the transform).

If a motion trapping structure is initially at rest in its equilibrium position then,
as explained in § 5.1, the frequency-domain velocity v(ω) does not have a pole at the
resonant frequency. Consequently, if a time-domain motion is excited by an incident
wave, there can be no persistent oscillation. This is illustrated in figure 6 for the
same structure as used for the calculation shown in figure 4. The structure is set in
motion by a incident Gaussian wave packet with a peak frequency corresponding to
kh = 4 (see equation (31) of McIver 2005 for the definition of the wave packet used).
After interaction with the incident wave, the motion of the internal free surface and
the structure both rapidly die away and the Fourier transform of the free surface
confirms the absence of a persistent oscillation at the resonant frequency (figure 7).
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6. Other modes of motion
This paper has concentrated on heaving motion trapping structures, but it is likely

that similar constructions are possible for other modes of motion. This is demonstrated
here for two-dimensional horizontal motions in water of infinite depth. For such surge
motions, the hydrostatic restoring force does not appear in the equation of motion
and the construction of a motion trapping structure at a frequency ω = ω0 requires
that the surge added mass coefficient a(ω) satisfies

M + a(ω0) = 0, (39)

and that the surge damping coefficient is zero. Equation (39) indicates that the added
mass is negative at a trapped-mode frequency ω =ω0 which suggests that, in this case,
the motion trapped mode is closely associated with a pole of the radiation potential in
the lower half of the complex frequency plane that lies close to the real frequency axis
near ω = ω0. With the assumption of geometrical symmetry about x = 0, a wave-free
potential corresponding to a horizontal oscillation about x = 0 has the form

φ0 =
µ sin 2θ

R2
+ o

(
1

R2

)
as R → ∞ (40)

(Ursell 1950). An application of Green’s theorem to φ0 and u = x similar to that
described for heave in § 3 shows that the resonance condition (39) is satisfied if and
only if ∫

F

xφ0 dx = 0, (41)

where F is the free surface. The required boundary condition,

∂φ0

∂n
= nx on Γ (42)

can be satisfied by examination of the streamlines of the potential

φ = x − φ0, (43)

where

φ0 = δ
∂φs

∂x
(44)

and φs is the combination of wave sources given in equation (23) (and hence φ0 is
formed from a pair of horizontal wave dipoles).

Here the choices K = 1, n= 0 and δ = 20 are made and the corresponding streamline
pattern is shown in figure 8 for x � 0. To construct a motion trapping structure,
a streamline is first chosen from those that surround the singular point in z � 0.
A second streamline is then chosen from those that intersect x =0 to ensure that
equation (41) is satisfied. (This is possible because the potential φ0 changes sign
across x = ±ξ .) One combination of streamlines which, together with their reflections
in x = 0, are able to form a motion trapping structure is shown using thicker lines in
figure 8. The complete structure has three elements and is typical of many calculations
(for different values of δ and choices of streamline around the singularity) in that the
central element has a significantly larger draft than the outer elements, and the gaps
between elements are relatively narrow compared to the overall dimensions of the
structure. In contrast to the heave case discussed in § 4, one streamline pattern yields
a range of trapping structures.
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Figure 8. Streamlines corresponding to the potential x − φ0 with φ0 given by equation (44),
and with K = 1 and δ = 20. The singular point is indicated by a filled disk.
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Figure 9. Surge added mass a/ρ (———) and damping b/ρω (– – –) coefficients for the
motion trapping structure shown in figure 8; a motion trapped mode exists at K =1.

The added mass and damping coefficients calculated by a panel method are given
in figure 9 for the motion trapping structure shown in figure 8. The motion trapping
is closely associated with a very narrow banded resonance around K =1 that could
easily be overlooked in a numerical investigation of the hydrodynamic properties of
this structure. This contrasts with the particular heave motion trapping structures
discussed earlier for which the frequency of the motion resonance was well separated
from the most rapid changes in the added mass and damping coefficients. The
streamline pattern in figure 8 suggests that the resonance in the radiation problem
corresponds to out-of-phase pumping oscillations in the two gaps between structural
elements (although the constructed streamlines correspond to the motion resonance
at K =1). An enlargement of the resonant region is given in figure 9(b). Owing to
the numerical error in the results of the panel method there is a frequency shift and
the minimum in the damping actually occurs at K = 1.000907 rather than the value
K =1 used in the original construction. Further indication of the level of numerical
error is given by the fact that at K = 1.000907 the added mass calculated by the
panel method is −2.69 rather than the value −2.78 calculated directly from the exact
velocity potential φ0 with K = 1.



Trapped modes in the water-wave problem 67

7. Conclusion
It has been demonstrated that, within the linearized theory of water waves, there

are freely floating structures that support trapped modes. Such modes are free
oscillations involving coupled motions of the structure and fluid that do not radiate
waves to infinity and which, in the absence of viscosity, will persist for all time. The
structures that support such modes are termed here motion trapping structures, and
can be contrasted with the previously known sloshing trapping structures that when
held fixed can support free oscillations of the fluid. Examples of motion trapping
structures have been constructed for both heave and surge motions in two dimensions
by examination of the streamlines of suitable chosen flows. In the case of heave, a
detailed explanation of why the streamline pattern yields a motion trapping structure
has been given. Examination of the equations of motion shows that motion trapped
modes cannot be excited by incident waves, but they can be excited by giving the
structure a non-zero initial displacement and/or velocity. This has been confirmed by
numerical calculations in the time domain.
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